

ERASMUS MUNDUS MASTER PROGRAMME IN SOIL SCIENCE – emiSS

2020-2021 ACADEMIC YEAR - MODULE SYLLABUS

Name of course:

REMOTE SENSING AND GIS in SOIL SCIENCE

ECTS	6
Type of Course	Elective
Form of Examination	Written Examination
Prerequisites	Basic knowledge in the Remote Sensing (RS) and Geographical Information System (GIS)

Agriculture		
Education profile	Academic	
Code of study form and level of education	Master of Science	
Academic year/Semester	First year/Fall Semester	
Specialization	Remote Sensing (RS) and Geographical Information System (GIS)	
Language of education	English	

The lecturer module:	
The name of faculty	Ondokuz Mayıs Univ. Faculty of Agriculture
The name of department	Soil Science & Plant Nutrition

Educational outcomes:

Description of the learning effect

KNOWLEDGE - student knows and understands:

1	1 Student knows to gain fundamental concepts and techniques using computer GIS and RS program				
2	Student knows the use of Remote Sensing (RS) and Geographical Information System (GIS) for environmental and agricultural purposes				
3	Student knows interpretation of the aerial photographs and satellite images				

SKILLS - the graduate can

1	Student obtains the necessary scientific information from literature, databases or other sources
2	Student shows the ability to correctly interpret results and draw conclusions from thematic maps.
3	Student knows how to create soil and land database and produce thematic maps

SOCIAL COMPETENCES - graduate:

1	Student shows activity during a discussion on various issues related to soil and land resources
2	Student has the competence to participate in land resource research and discuss their results

Course objectives and content:

This course is to acquaint the graduate students with fundamental concepts of advanced soil physics.

Relationships among solid, liquid and gas phases, total potential of soil water, water flow in planar, radial and spherical symmetries, heat transport in soil system, saturated and unsaturated flow, solutions for some flow problems.

		Remote Sensin	g and GIS in Soil Science	36	hours		
Subject of	1	Fundamental concepts and history of RS and advantages of RS, 3 h					
lecture	2	Atmospheric effects, resolution properties of RS and RS platforms, 3 h					
	3	Remote sensing sate	Remote sensing satellites and their properties, image processing 3 h				
	4	Image classification processes, 3 h	Image classification and analysis (supervised and unsupervised), arithm processes, 3 h				
	5	Using of satellites in	sing of satellites image for studies of land and soil, 3 h				
	6	Land use and la. methodologies, 3 h	and use and land cover classification according to Corine and USGS nethodologies, 3 h				
	7	Midterm exam	Midterm exam				
	8	Basic mapping information (scale, projections, map types, coordinate systems etc) 3 h Spatial and non-spatial information systems 3 h			ns etc)		
	9						
	10	Land information systems, what is GIS and its historical development 3 h					
	11	GIS elements and their main functions, data collections 3 h					
	12	Patial data preparation (import and export, georefenecing) 3 h Data arrangements (digitizing, vector and raster spatial data arrangement, styl database management preparation of report and map designs 3 h					
	13				styles),		
	14	Final exam					
		verification and ia and principles	For a positive grade, sum of 40% of midterm (100 of final (100%) exams should be greater than 60.)%) a	nd 60%		

Literature:

Recommended Textbooks	 Levin, N. 1999. Fundamentals of Remote Sensing, International Maritime Academy, Trieste, Italy Tempfil K., Kerle N., Huurneman, C.G., Janssen F.L.L. 2009.Principles of Remote Sensing, ITC, The Netherlands. Rolf, A and Huisman, O. 2009. Principles of Geographic Information Systems. ITC, The Netherlands. ESRI, 2014. ArcGIS for Desktop.
Complementary	Current publications in scientific journals related to course issues and some course materials supported by lecturer.

Structure of learning outcomes:

The area of study: RS&GIS, environmental science, natural resources

 $6 \quad ECTS^*$

Learning Activities	Amount	Time (h)	Total work- load (h)	
Participate in lecture	12	3	36	
Participate in midterm exam	1	2	2	
Individual study for midterm exam	6	3	18	
Individual study for lectures	12	1	12	
Laboratory study	10	2	20	
Quiz				
Assignment	10	2	20	
Participate in final exam	1	2	2	
Individual study for final exam	6	3	18	
Literature critical review				
Oral exam				
Individual study for problem solution	11	2	22	
Consultations				
Participate in researches				
Mandatory practices and internships				
	Total wo	Total workload (h)		

*ECTS Credits = Total Workload (Hours) / 25 (Hours/1 ECTS) = 150 / 25 = 6 ECTS

Name Surname of Lecturer :

Date: